Сказ про углеводный обмен в организме человека, про причины сбоя в организме, про то, как можно улучшить обмен углеводами и лечится ли этот сбой таблетками. Я все рассказал в этой статье. Поехали!
— Ты, Иван-царевич, на меня не смотри. Я — Волк. Мне положено одним мясом питаться. Для человека важны и травки всякие, и фрукты-овощи. Без них не будет у тебя ни сил, ни здоровья…
Привет, друзья! О том, насколько важен углеводный обмен в организме человека, сказано немало, но нет ничего более забываемого, чем прописные истины. Поэтому, не расписывая сложную биохимию, я кратко поведаю то основное, что ни в коем случае нельзя выбрасывать из головы. Итак, читайте мою презентацию и запоминайте!
Друзья, читайте статью далее, в ней будет много интересного!
А тем, кто хочет:«УЗНАТЬ, ЧТО МЕШАЕТ ВАМ ПОХУДЕТЬ?»
Пройдите ТЕСТ.
Классификация
В зависимости от строения, различают несколько групп углеводов.
Моносахариды – мелкие молекулы, которые не расщепляются в пищеварительном тракте. Это глюкоза, фруктоза, галактоза.
Дисахариды – мелкие молекулы углеводов, которые в пищеварительном тракте расщепляются на два моносахарида. Например, лактоза – на глюкозу и галактозу, сахароза – на глюкозу и фруктозу.
Полисахариды – крупные молекулы, состоящие из сотен тысяч остатков моносахаридов (в основном, глюкозы), соединенных между собой. Это крахмал, гликоген мяса.
Углеводы и диеты
Время расщепления полисахаридов в пищеварительном тракте отличается, что зависит от их способности растворяться в воде. Одни полисахариды расщепляются в кишечнике быстро. Тогда глюкоза, полученная при их распаде, быстро попадает в кровь. Такие полисахариды называют «быстрыми». Другие хуже растворяются в водной среде кишечника, поэтому медленнее расщепляются, а глюкоза медленнее поступает в кровь. Такие полисахариды называют «медленными». Некоторые из этих элементов вообще не расщепляются в кишечнике. Их называют нерастворимыми пищевыми волокнами.
Обычно под названием «медленные или быстрые углеводы» имеются в виду не сами полисахариды, а продукты, которые их содержат в большом количестве.
Список углеводов – быстрых и медленных, представлен в таблице.
Быстрые углеводы | Медленные углеводы |
жареный картофель | Хлеб с отрубями |
Белый хлеб | Необработанные зерна риса |
Картофельное пюре | Горох |
Мед | Овсяные хлопья |
Морковь | Гречневая каша |
Кукурузные хлопья | Ржаной хлеб с отрубями |
Сахар | Свежевыжатый фруктовый сок без сахара |
Мюсли | Макароны из муки грубого помола |
Шоколад | Красная фасоль |
Вареный картофель | Молочные продукты |
Бисквит | Свежие фрукты |
Кукуруза | Горький шоколад |
Белый рис | Фруктоза |
Черный хлеб | Соя |
Свекла | Зеленые овощи, помидоры, грибы |
Бананы | — |
Джем | — |
При выборе продуктов для составления рациона диетолог всегда опирается на список быстрых углеводов и медленных. Быстрые в сочетании с жирами в одном продукте или приеме пищи приводят к отложению жира. Почему? Быстрое повышение содержания глюкозы в крови стимулирует выработку инсулина, который обеспечивает запас глюкозы в организме, включая и путь образования из нее жира. В результате при поедании пирожных, мороженого, жареной картошки вес набирается очень быстро.
Переваривание
С точки зрения биохимии, обмен углеводов проходит в три этапа:
- Пищеварение.Оно начинается еще в ротовой полости в процессе пережевывания пищи.
- Собственно метаболизм углеводов.
- Образование конечных продуктов обмена.
Углеводы – основа пищевого рациона человека. Согласно формуле рационального питания, в составе пищи их должно быть в 4 раза больше, чем белков или жиров. Потребность в углеводах индивидуальна, но, в среднем, человеку необходимо 300-400 г в сутки. Из них около 80% приходится на крахмал в составе картофеля, макарон, круп и 20% — на быстрые углеводы (глюкоза, фруктоза).
Обмен углеводов в организме также начинается в ротовой полости. Здесь на полисахариды – крахмал и гликоген действует фермент слюны амилаза. Амилаза гидролизует (расщепляет) полисахариды на крупные осколки – декстрины, которые попадают в желудок. Здесь нет ферментов, действующих на углеводы, поэтому декстрины в желудке никак не изменяются и проходят дальше по пищеварительному тракту, попадая в тонкий кишечник. Здесь на углеводы действует несколько ферментов. Амилаза панкреатического сока гидролизует декстрины до дисахарида мальтозы.
Специфические ферменты секретируют клетки самого кишечника. Фермент мальтаза гидролизует мальтозу до моносахарида глюкозы, лактаза – лактозу до глюкозы и галактозы, сахараза – сахарозу до глюкозы и фруктозы. Полученные монозы всасываются из кишечника в кровь и по воротной вене попадают в печень.
Этапы расщепления углеводов
Переработка пищи, основной составляющей которой, является углеводный компонент, происходит в разных частях пищеварительного тракта.
— начало расщепления происходит еще в ротовой полости. Во время акта жевания пища обрабатывается ферментом слюны питалином (амилазой), который синтезируется околоушными железами. Он помогает огромной молекуле крахмала распасться до более мелких полимеров.
— так как пища находится в ротовой полости непродолжительное время, она требует последующей переработки в желудке. Попадая в полость желудка углеводные продукты смешиваются с секретом поджелудочной железы, а именно панкреатической амилазой, которая является более эффективной, чем амилаза ротовой полсти, а потому уже через 15-30 минут, когда химус (полужидкое не до конца переваренное содержимое желудка) из желудка достигает двенадцатиперстной кишки почти все углеводы оказываются уже окисленными до очень мелких полимеров и мальтозы (дисахарид, две соединенные молекулы глюкозы).
— из двенадцатиперстной кишки смесь полисахаридов и мальтозы продолжает свой удивительный путь в верхние отделы кишечника, где их окончательной переработкой занимаются так называемы ферменты кишечного эпителия. Энтероциты (клетки, которые выстилают микроворсинки тонкого кишечника) содержат ферменты лактазу, мальтазу, сахаразу и декстриназу, которые осуществляют конечную переработку дисахаридов и мелких полисахаридов до моносахаридов (это уже одна молекула, но еще не глюкоза). Лактоза распадается на галактозу и глюкозу, сахароза – на фруктозу и глюкозу, мальтоза, как и другие небольшие полимеры – на молекулы глюкозы, а она мгновенно попадает в кровяное русло.
— из кровяного русла глюкоза попадает в печень и, впоследствии, из нее синтезируется гликоген (полисахарид животного происхождения, выполняет запасающую функцию, просто необходим организму, когда нужно быстро получить большое количество энергии).
Роль печени в обмене углеводов
Этот орган обеспечивает поддержание определенного уровня глюкозы в крови за счет реакций синтеза и распада гликогена.
В печени идут реакции взаимопревращений моносахаридов – фруктоза и галактоза превращаются в глюкозу, а глюкоза может превратиться во фруктозу.
В этом органе идут реакции глюконеогенеза – синтеза глюкозы из неуглеводных предшественников — аминокислот, глицерина, молочной кислоты. Также здесь нейтрализуется гормон инсулин с помощью фермента инсулиназы.
Метаболизм глюкозы
Глюкоза играет ключевую роль в биохимии обмена углеводов и в общем метаболизме организма, поскольку она является главным источником энергии.
Уровень глюкозы в крови является постоянной величиной и составляет 4 – 6 ммоль/л. Основными источниками этого элемента в крови являются:
- Углеводы пищи.
- Гликоген печени.
- Аминокислоты.
Расходуется глюкоза в организме на:
- образование энергии,
- синтез гликогена в печени и мышцах,
- синтез аминокислот,
- синтез жиров.
Сказ про то, почему нельзя выбирать одно и игнорировать другое
Итак мы выяснили, что самый главный моносахарид — это глюкоза. Именно она обеспечивает наше тело энергетическим запасом. Тогда почему нельзя питаться только ею, и плюнуть на все остальные углеводы? На это есть несколько причин.
- В чистом виде она сразу же всасывается в кровь, вызывая резкий скачок сахара. Гипоталамус даёт сигнал: «Снизить до нормы!» Поджелудочная железа выбрасывает порцию инсулина, он возвращает баланс, отправляя излишки в печень и мышцы в виде гликогена. И так снова и снова. Очень быстро клетки железы износятся и перестанут нормально функционировать, что приведёт к диабету и другим тяжёлым осложнениям, исправить которые уже будет невозможно.
- Хищник имеет самый короткий пищеварительный тракт, и нужные для энергетической подпитки углеводы синтезирует из тех же остатков белковых молекул. Он к этому привычен. Наш человеческий ЖКТ устроен несколько по-другому. Мы должны получать углеводистую пищу, в объёме около половины всех питательных веществ, в том числе и ради пищевых волокон, которые помогают перистальтике и дают пищу полезным бактериям в толстом отделе. Иначе запор и гнилостные процессы с образованием ядовитых отходов нам обеспечены.
- Мозг — это орган, который не может накапливать энергетический запас, как мышцы или печень. Для его работы необходимо постоянное поступление глюкозы из крови, и больше половины всего запаса гликогена печени уходит именно ему. По этой причине, при значительных умственных нагрузках (научная деятельность, сдача экзаменов и пр.) может тянуть «на сладкое». Это нормальный, физиологичный процесс.
- Для синтеза белков в организме нужна не только глюкоза. Остатки молекул полисахаридов дают нужные фрагменты для образования нужных нам «строительных элементов».
- Вместе с растительной пищей к нам приходят витамины и прочие полезные вещества, которые можно получить и из животной пищи, но без пищевых волокон. А мы уже выяснили, что они нашему кишечнику очень необходимы.
Есть и другие, не менее важные причины, почему нам нужны все сахара, а не только моносахариды.
Природный источник энергии
Глюкоза – универсальный источник энергии для всех клеток организма. Энергия необходима для построения собственных молекул, сокращения мышц, выработки тепла. Последовательность реакций превращения глюкозы, приводящих к выделению энергии, называют гликолизом. Реакции гликолиза могут идти в присутствии кислорода, тогда говорят об аэробном гликолизе, или в бескислородных условиях, тогда процесс является анаэробным.
В ходе анаэробного процесса одна молекула глюкозы превращается в две молекулы молочной кислоты (лактата) и выделяется энергия. Анаэробный гликолиз дает мало энергии: из одной молекулы глюкозы получается две молекулы АТФ – вещества, химические связи которого аккумулируют энергию. Этот способ получения энергии используется для кратковременной работы скелетных мышц – от 5 секунд до 15 минут, то есть в то время, пока механизмы снабжения мышц кислородом не успевают включиться.
В ходе реакций аэробного гликолиза одна молекула глюкозы превращается в две молекулы пировиноградной кислоты (пирувата). Процесс с учетом трат энергии на собственные реакции дает 8 молекул АТФ. Пируват вступает в дальнейшие реакции окисления — окислительное декарбоксилирование и цитратный цикл (цикл Кребса, цикл трикарбоновых кислот). В результате этих превращений на молекулу глюкозы выделится 30 молекул АТФ.
Обмен гликогена
Функция гликогена – запасание глюкозы в клетках животного организма. Эту же функцию в растительных клетках выполняет крахмал. Гликоген иногда называют животным крахмалом. Оба вещества являются полисахаридами, построенными из многократно повторяющихся остатков глюкозы. Молекула гликогена более разветвленная и компактная, чем молекула крахмала.
Процессы обмена в организме углевода гликогена особенно интенсивно идут в печени и скелетных мышцах.
Гликоген синтезируется в течение 1-2 часов после еды, когда уровень в крови глюкозы высок. Для образования молекулы гликогена нужен праймер – затравка, состоящая из нескольких остатков глюкозы. К концу праймера последовательно присоединяются новые остатки в виде УТФ-глюкозы. Когда цепочка вырастает на 11-12 остатков, к ней присоединяется боковая цепь из 5-6 таких же фрагментов. Теперь у цепочки, идущей от праймера, есть два конца – две точки роста молекулы гликогена. Эта молекула будет многократно удлиняться и ветвиться до тех пор, пока сохраняется высокая концентрация в крови глюкозы.
Между приемами пищи гликоген распадается (гликогенолиз), освобождая глюкозу.
Полученная при распаде гликогена печени, она идет в кровь и используется для нужд всего организма. Глюкоза, полученная при распаде гликогена в мышцах, тратится на нужды только мышц.
Когда происходит расщепление жиров
Пища нужна нашему организму для обеспечения его энергией. Как мы уже разобрались, организм запасает энергию в виде гликогена или жировых отложений. Энергия нашему организму нужна постоянно: на работу внутренних органов, обеспечение всех систем и функций, на переваривание пищи, на физическую активность.
В пассивном состоянии и во время сна наш организм расходует гораздо меньше энергии, чем при физической активности. Вот почему для эффективного сжигания энергии нам нужно много двигаться.
Также энергозатраты организма повышаются при необходимости терморегуляции (если нужно согревать тело при внешней холодной температуре) и во время восстановления организма после болезней и травм.
Этим объясняется то, что в холодное время года наш организм тратит больше энергии, чем летом при таких же условиях, – энергия идет на обогрев тела. А после болезней много энергии идет на восстановление организма, отсюда и потеря веса тела после серьезных заболеваний – это организм израсходовал часть жировых запасов в качестве источника энергии.
В любом случае, наш организм начинает тратить энергию из жировых запасов только, если ее не хватает. Поэтому важный момент похудения – это обеспечение дефицита калорий. Когда потребляется меньше энергии, чем расходуется, то в ход идут энергетические запасы – гликоген и жир.
Гликоген из мышц тратится в основном мышцами. То есть во время физической активности, будь-то занятия спортом или физическая работа, сначала тратятся запасы гликогена в мышцах, а уже потом при их недостатке начинает расходоваться жир.
Вот почему непродолжительные тренировки часто не приводят к результатам в похудении – просто организм берет энергию только из гликогеновых запасов, и до жировых запасов дело не доходит. Чтобы этого не происходило, тренировки должны быть продолжительностью около часа: тогда и гликоген будет потрачен, и жир начнет расщепляться.
При этом стоит учитывать, что сильно большой дефицит калорий может привести к обратному эффекту. Организм воспримет такую ситуацию как голод и вынужденно примет оборонительную позицию – замедлит обмен веществ, чтобы запасы жира тратились не так интенсивно. В его задачах – сохранить как можно больше запасов энергии, чтобы выстоять перед голодом, на который вы его обрекли.
Поэтому, если хотите похудеть, не пугайте свой организм голодом и не заставляйте его защищаться (как-никак, инстинкт самосохранения у нас самый важный и первостепенный). Оптимальный суточный дефицит калорий при коррекции веса составляет 15-20% от суточной нормы калорийности питания. Этого вполне достаточно, чтобы планомерно и уверено сбрасывать лишний вес, не нанося вреда и стресса организму.
Образование глюкозы из неуглеводных предшественников — глюконеогенез
Организму хватает энергии, запасенной в виде гликогена, только на несколько часов. Через сутки голодания этого вещества в печени не остается. Поэтому при безуглеводных диетах, полном голодании или при длительной физической работе нормальный уровень глюкозы в крови поддерживается за счет ее синтеза из неуглеводных предшественников – аминокислот, глицерина молочной кислоты. Все эти реакции протекают, в основном, в печени, а также в почках и слизистой кишечника. Таким образом, процессы обмена углеводов, жиров и белков тесно переплетены между собой.
Из аминокислот и глицерина глюкоза синтезируется при голодании. В условиях отсутствия еды распадаются белки тканей до аминокислот, жиры – до жирных кислот и глицерина.
Из молочной кислоты глюкоза синтезируется после интенсивной физической нагрузки, когда она накапливается в больших количествах в мышцах и печени в ходе анаэробного гликолиза. Из мышц молочная кислота переносится в печень, где из нее синтезируется глюкоза, которая вновь возвращается в работающую мышцу.
Полезное многообразие
В других статьях я уже сообщал о том, что все источники углеводов подразделяются на моно- , ди- , три- , олиго- и полисахариды. Всасываться из кишечного тракта могут только простые, сложные должны сперва расщепиться на составные части.
Чистый моносахарид — это глюкоза. Именно она ответственна за уровень сахара в нашей крови, накопление гликогена в качестве «топлива» в мышцах и печени. Она даёт силу мускулам, обеспечивает мозговую деятельность, образует энергетические молекулы АТФ, которые расходуются на синтез белков, ферментов, пищеварительные процессы, обновление клеток и выведение продуктов распада.
Диеты при различных заболеваниях порой включают полный отказ от углеводов, но такие воздействия могут быть только кратковременными, до достижения терапевтического эффекта. Зато можно регулировать процесс похудения путём уменьшения углеводов в пище, ибо много запасов — так же нехорошо, как и мало.
Регуляция углеводного обмена
Этот процесс осуществляется нервной системой, эндокринной системой (гормонами) и на внутриклеточном уровне. Задача регуляции – обеспечить стабильный уровень глюкозы в крови. Из гормонов, регулирующих процессы обмена углеводов, главными являются инсулин и глюкагон. Они вырабатываются в поджелудочной железе.
Основная задача инсулина в организме – снижение уровня глюкозы в крови. Добиться этого можно двумя путями: увеличив проникновение глюкозы из крови в клетки организма и усилив в них ее использование.
- Инсулин обеспечивает проникновение глюкозы в клетки определенных тканей – мышечной и жировой. Их называют инсулинзависимыми. В мозг, лимфатическую ткань, эритроциты глюкоза попадает без участия инсулина.
- Инсулин усиливает использование глюкозы клетками путем:
- Активации ферментов гликолиза (глюкокиназа, фосфофруктокиназа, пируваткиназа).
- Активации синтеза гликогена (за счет усиления превращения глюкозы в глюкозо-6-фосфат и стимуляции гликогенсинтазы).
- Торможения ферментов глюконеогенеза (пируваткарбоксилаза, глюкозо-6-фосфатаза, фосфоенолпируваткарбоксикиназа).
- Усиления включения глюкозы в пентозофосфатный цикл.
Все остальные гормоны, регулирующие углеводный обмен – это глюкагон, адреналин, глюкокортикоиды, тироксин, гормон роста, АКТГ. Они увеличивают содержание глюкозы в крови. Глюкагон активирует распад гликогена в печени и синтез глюкозы из неуглеводистых предшественников. Адреналин активирует распад гликогена в печени и мышцах.
Углеводный обмен в организме человека: цепочка превращений
Углеводный обмен в организме человека (УО) начинается, когда ты кладёшь в рот углеводистую пищу и начинаешь её пережёвывать. Во рту присутствует полезный фермент — амилаза. Он кладёт начало расщеплению крахмала.
Пища поступает в желудок, потом в двенадцатиперстную кишку, где начинается интенсивный процесс расщепления, и наконец — в тонкий кишечник, где этот процесс продолжается и готовые моносахариды всасываются в кровь.
Большая часть оседает в печени, преобразуясь в гликоген — наш главный энергетический запас. В печёночные клетки глюкоза проникает без труда. Накапливают гликоген и мышцы, но в меньшей степени. Чтобы проникнуть через клеточные оболочки внутрь миозитов, нужно потратить часть энергии. Да и места там маловато.
Зато мышечные нагрузки помогают проникновению. Получается интересный эффект: мышечный гликоген при физической активности быстро израбатывается, но одновременно с этим новому пополнению проще просочиться сквозь клеточные мембраны, и накопиться в виде гликогена.
Этот механизм отчасти объясняет выработку физической выносливости нашей мускулатуры в процессе занятий спортом. Пока мы не тренируем мускулы — они не в состоянии накапливать много энергии «про запас».
Расходуется гликоген в анаэробном или аэробном распаде. В первом случае из него фабрикуются АТФ (1 молекула глюкозы даёт 2 молекулы аденозинтрифосфорной кислоты), которые расщепляются на воду и углекислый газ с выделением энергии. Во втором — образуется молочная кислота, избыток которой отправляется в печень, где из него может снова образовываться АТФ в цикле Кори.
Эти биохимические реакции достаточно сложны, но суть у них примерно одинаковая — обеспечить нас силами для жизнедеятельности.
Некоторые промежуточные продукты процесса идут на синтез необходимых для организма веществ и соединений. Избыток углеводов стимулирует выработку инсулина поджелудочной железой и результатом этого процесса — отложение жира.
Нарушения обмена. Гипогликемия
Самыми распространенными нарушениями обмена углеводов являются гипо- и гипергликемии.
Гипогликемия – состояние организма, вызванное низким уровнем глюкозы в крови (ниже 3,8 ммоль/л). Причинами могут быть: снижение поступление этого вещества в кровь из кишечника или печени, повышение его использования тканями. К гипогликемии могут привести:
- Патологии печени – нарушение синтеза гликогена или синтеза глюкозы из неуглеводных предшественников.
- Углеводное голодание.
- Длительная физическая нагрузка.
- Патологии почек – нарушение обратного всасывания глюкозы из первичной мочи.
- Нарушения пищеварения – патологии расщепления углеводов пищи или процесса всасывания глюкозы.
- Патологии эндокринной системы – избыток инсулина или недостаток гормонов щитовидной железы, глюкокортикоидов, гормона роста (СТГ), глюкагона, катехоламинов.
Крайнее проявление гипогликемии — гипогликемическая кома, которая чаще всего развивается у больных сахарным диабетом I типа при передозировке инсулина. Низкое содержание глюкозы в крови приводит к кислородному и энергетическому голоданию мозга, что вызывает характерные симптомы. Отличается чрезвычайно быстрым развитием – если не предпринять нужных действий в течение нескольких минут, человек потеряет сознание и может погибнуть. Обычно пациенты с сахарным диабетом умеют распознавать признаки падения глюкозы в крови и знают, что нужно предпринять – выпить стакан сладкого сока или съесть сладкую булочку.
Гипергликемия
Еще одним видом нарушения углеводного обмена является гипергликемия – состояние организма, вызванное стойким высоким содержанием глюкозы в крови (выше 10 ммоль/л). Причинами могут быть:
- патологии эндокринной системы. Самая частая причина гипергликемии – сахарный диабет. Различают сахарный диабет I и II типа. В первом случае причина болезни — дефицит инсулина, вызванный поражением клеток поджелудочной железы, секретирующих этот гормон. Поражение железы чаще всего имеет аутоиммунный характер. Сахарный диабет II типа развивается при нормальной выработке инсулина, поэтому называется инсулиннезависимым; но инсулин не выполняет свою функцию – не проводит глюкозу в клетки мышечной и жировой тканей.
- неврозы, стрессы активируют выработку гормонов – адреналина, глюкокортикоидов, щитовидной железы, которые усиливают распад гликогена и синтез глюкозы из неуглеводных предшественников в печени, тормозят синтез гликогена;
- патологии печени;
- переедание.
В биохимии обмен углеводов – одна из самых интересных и обширных тем для изучения и исследований.
Роль глюкозы и инсулина в углеводном обмене
Для обеспечения жизнедеятельности человеческому организму необходима энергия, которая вырабатывается за счёт сложного процесса превращения углеводов, в частности, глюкозы. Основным источником поступления в кровь глюкозы является пища, которая содержит такие углеводы, как лактоза, сахароза, крахмал и другие. Как правило, большая часть этих углеводов в процессе пищеварения превращается в глюкозу.
Глюкоза представляет собой простой сахар, состоящий из шести атомов углерода, и является важным энергетическим источником для всего организма и единственным – для головного мозга. В свободном состоянии глюкоза практически не присутствует в пищевых продуктах, однако она входит в состав сахарозы и крахмала, из которых она выделяется в процессе пищеварения, давая организму необходимую энергию.
Входящие в состав пищи углеводы поставляют в организм около 60% энергии. Попав в желудочно-кишечный тракт, сложные углеводы расщепляются ферментами до простых молекул, называемых моносахаридами, которые затем всасываются в кровь. К моносахаридам относятся глюкоза, галактоза и фруктоза. Из всех моносахаридов 80% принадлежит глюкозе, к тому же, большая часть галактозы и фруктозы в процессе пищеварения также превращаются в глюкозу. В итоге, все поступающие с пищей углеводы в ходе метаболизма расщепляются до глюкозы.
Глюкоза может служить источником энергии, только функционируя внутри клетки. Каждая клетка организма запасает энергию посредством метаболического окисления глюкозы до углекислого газа и воды. Под воздействием этого процесса аккумулируемая в молекуле глюкозы энергия используется для образования энергоёмкого соединения – молекулы АТФ. Заключённая в молекуле АТФ энергия в последующем может использоваться организмом для осуществления химических внутриклеточных реакций.
Проникнув внутрь клеток, глюкоза берёт на себя центральную метаболическую роль, снабжая энергией многие биохимические реакции, необходимые для осуществления клеточных функций. Головной мозг, в отличие от других тканей, не способен синтезировать глюкозу и обеспечение его энергетических нужд полностью зависит от поступления глюкозы из крови. Чтобы головной мозг функционировал нормально, уровень глюкозы в крови должен составлять не менее 3.0 ммоль/л. Однако, он не должен быть слишком высоким. Поскольку глюкоза является осмотически активным веществом, то при возрастании её уровня в крови в соответствии с законами осмоса из тканей в кровь начинает поступать вода, а почки начинают активно выводить глюкозу, если её уровень достигает 10 ммоль/л. В результате организм лишается глюкозы – главного источника энергии.
Поговорим о том, как же глюкоза проникает внутрь клеток. В результате пищеварения и сложного обмена углеводов в крови оказывается повышенное содержание глюкозы. Это служит своеобразным сигналом поджелудочной железе для выработки ферментов и гормонов.
Клетки поджелудочной железы имеют разное строение и выполняют разные функции. Существуют так называемые бета-клетки, которые синтезируют гормон инсулин. При повышении в крови уровня глюкозы, инсулин выбрасывается в кровь, открывая ей своеобразный шлюз для попадания внутрь клеток, где в последующем она сможет использоваться организмом, как источник энергии. Но клетки организма нуждаются в постоянной энергетической подпитке, а не только во время еды, поэтому нормальная секреция инсулина у здорового человека идёт постоянно с показателем 0.5-1 в час.
Прием пищи стимулирует дополнительный выброс инсулина. Причём, это происходит практически моментально, что не приводит к повышению уровня сахара в крови. Между приемами пищи организму также необходим энергетический материал в виде глюкозы, и для этого печень резервирует необходимое количество углеводов, переработанных в гликоген, и по мере необходимости преобразует его обратно в глюкозу.
Одной из функций поджелудочной железы является регулирование уровня глюкозы в крови. Для этой цели в её клетках вырабатываются два гормона – антагониста: инсулин и глюкагон. То есть, если глюкозы в крови много – инсулин спешить провести её внутрь клеток, а энергетический излишек с помощью печени зарезервировать в гликоген. Если глюкозы в крови мало – глюкагон блокирует выработку гликогена, начиная активно перерабатывать его обратно в глюкозу, чтобы обеспечить необходимое энергетические питание организма. Таким образом, благодаря нормальной работе поджелудочной железы, поддержание уровня глюкозы в крови подвергается строгому контролю.
Кроме регулирования углеводного обмена, роль инсулина в нормальной работе организма невозможно переоценить. Инсулин – единственный гормон, помогающий поступившей в кровь глюкозе пройти печёночные, жировые и мышечные клетки. Если инсулина недостаточно, то происходит, приблизительно, то же, что может произойти с автомобилем; для запуска процесса сгорания топлива необходимо включить зажигание, но оно не работает, и топливо заливает двигатель. Функцию зажигания в организме выполняет именно инсулин. Если его не хватает, глюкоза не сгорает, не перерабатывается в энергию, а накапливается в крови и нарушает работу всего организма. Возникает инсулиновый голод среди сахарного изобилия.
Кроме того, инсулин помогает печени в образовании резервного энергетического запаса гликогена, играет огромную роль в обеспечении энергетического баланса организма, препятствуя переходу аминокислот в сахара, улучшает синтез белков, способствует преобразованию углеводов в жиры, то есть участвует практически во всех жизненно важных процессах. Если же, после переработки глюкозы и отложения гликогена в печени, показатель уровня сахара в крови остаётся высоким, то его избыток жировые клетки превращают в жир, что, соответственно, приводит к ожирению.
Однако, при длительном, неправильно составленном рационе питания, с большим количеством «быстрых» углеводов и рафинированных продуктов, работа поджелудочной железы может нарушиться. Это грозит развитием такого серьёзного заболевания, как сахарный диабет. Если клетки не могут усвоить глюкозу, поступившую в кровь при переваривании пищи, то её уровень постепенно повышается. Существует два типа сахарного диабета. I тип (инсулинозависимый) требует введения в организм инсулина извне, так как поджелудочная железа практически не вырабатывает инсулин. При II типе (инсулиннезависимом) вырабатывается достаточное количество инсулина, но он не работает должным образом. Поскольку клетки не получают необходимого количества энергии, возникает слабость и быстрое переутомление.
Если показатель уровня сахара в крови выше 10 ммоль/л, то к его выводу из организма подключаются почки. Поскольку увеличивается мочеотделение, появляется чувство постоянной жажды. В конце концов, организм переключается на другие виды горючего: жиры и белки. Но их расщепление происходит тоже под воздействием инсулина, которого катастрофически не хватает, поэтому жиры сгорают не до конца, что приводит к отравлению всего организма и может спровоцировать кому.
Поэтому, чтобы сохранить здоровье, необходимо тщательно следить за качеством рациона питания и, прежде всего, углеводов. Существует такое понятие, как гликемический индекс (ГИ) продуктов. Он показывает, с какой скоростью в организме расщепляется и преобразуется в глюкозу тот или иной продукт. При этом, чем быстрее расщепление, тем выше гликемический индекс. Так называемые «быстрые» углеводы заставляют поджелудочную железу реагировать выбросом рекордного количества инсулина. Употребление «быстрых» углеводов всегда ведёт к развитию ожирения, поскольку излишек глюкозы организм непременно отложит про запас в виде жира. Совсем другое дело обстоит с «медленными» углеводами, которые постепенно расщепляясь, позволяют инсулину равномерно проводить глюкозу в клетки, обеспечивая долговременное чувство сытости и необходимую энергетическую подпитку.
Таким образом, процесс обмена углеводов идёт по двум направлениям: преобразование пищевых веществ в энергию и перераспределение их избытка в энергетические резервы для подпитки между приемами пищи. Если энергетический резерв полон, а в крови ещё присутствует глюкоза, то организм её откладывает в виде жирового запаса. Поэтому очень важно подпитывать организм энергией, употребляя «медленные» углеводы. При правильной работе пищеварительной системы и поджелудочной железы, показатель содержания сахара в крови всегда будет оставаться в норме, способствуя сохранению здоровья и активного образа жизни.
Автор: Арина Михайлова